Saturday, February 03, 2007

A Wormhole Time Machine in Three Not So Easy Steps

1. Find or build a wormhole -- a tunnel connecting two different locations in space. Large wormholes might exist naturally in deep space, a relic of the big, bang. Otherwise we would have to make do with subatomic wormholes, either natural ones (which are thought to be winking in and out of existence all around us) or artificial ones (produced by particle accelerators, as imagined here). These smaller wormholes would have to be enlarged to a useful size, perhaps using energy fields like those that caused space to inflate shortly after the big bang.

2. Stabilize the wormhole. An infusion of negative energy, produced by quantum means such as the so-called Casimir effect, would allow a signal or object to pass safely through the wormhole. Negative energy counteracts the tendency of the wormhole to pinch off into a point of infinite or near-infinite density. In other words, it prevents the wormhole from becoming a black hole.

3. Tow the wormhole. A spaceship, presumably of highly advanced technology, would separate the mouths of the wormhole. One mouth might be positioned near the surface of a neutron star, an extremely dense star with a strong gravitational field. The intense gravity causes time to pass more slowly. Because time passes more quickly at the other wormhole mouth, the two mouths become separated not only in space but also in time.

No comments: